ترانس جریان
ترانسهای جریان برای نمونه گیری جریان به نسبت عبور جریان از اولیه خود و القای آن در ثانویه استفاده میشوند. این ترانسها به منظور حفاظت و اندازه گیری در ابتدای خطوط ورودی به پستها و همچنین در ورودی ترانس قدرت و ورودی ثانویه ترانس و همچنین در خروجی های پست و نقاط کلیدی دیگر که احتیاج است جریان در آن نقطه تحت نظر باشد استفاده میشود که هر کدام از این نقاط با ترانس مخصوص به خود چه از نظر عایقی و ساختمان و چه از نظر قدرت و دقت ، نصب و استفاده می گردند .
ترانسفورماتور جریان از دو سیم پیچ اولیه و ثانویه تشکیل شده که جریان واقعی در پست از اولیه عبور نموده و در اثر عبور این جریان و متناسب با آن، جریان کمی (در حدود آمپر) در ثانویه به وجود میآید. ثانویه این ترانسها با مقیاس کمتری از اولیه خود که تا حد بسیار بالایی تمام ویژگیهای جریان در اولیه خود را دارد به تجهیزات فشار ضعیف پست و رله ها و نشاندهنده ها متصل میشود. ثانویه این ترانسها دارای سیم پیچ با دورهای زیادتری نسبت به اولیه که بیشتر مواقع تنها یک شمش و یا چند دور از شمش است ساخته میشود .
نکته ای که قابل توجه است ، مقدار سیم پیچ در تعداد دور است که باید به نسبت مورد نظر رسید . در ثانویه سیم های بدور هسته سیم های لاکی هستند . هسته های حفاظتی بدون در نظر گرفتن تصحیح دور طراحی میشنود ولی در هسته های اندازه گیری جهت رسیدن به بارها و دقت های مورد نیاز تصحیح دور انجام میشود .میزان بار در ثانویه ، از نکات دیگر است که در طراحی سطح مقطع سیم پیچ موثر است .این ترانسها هم باید در حالت و شرایط عادی و هم در شرایط اضطراری مثل جریان زیاد و یا هر خطایی که ممکن است بوجود آید قابلیت اندازه گیری ونمونه گیری جریان را داشته باشد .
یکی ازمهمترین موارد در ساختمان یک ترانسفورماتور جریان، اختلاف ولتاژ خیلی زیاد بین اولیه و ثانویه میباشد زیرا ولتاژ اولیه همان ولتاژ نامی پست است، در حالیکه ولتاژ ثانویه خیلی پایین میباشد که با توجه به این مورد بایستی بین اولیه و ثانویه ایزولاسیون کافی وجود داشته باشد. ترانسفورماتورهای جریانی که در پستهای فشارقوی مورد استفاده قرار میگیرند، دارای ایزولاسیون کاغذ و روغن (توأما") میباشند.
طرح این ترانسفورماتورها نیز بستگی به سازنده آن داشته، ولی بطور کلی ترانسفورماتورهای جریان از نظر ساختمانی در انواع مختلف ساخته میشوند:
1) ct های هسته پایین
2) ctهای هسته بالا
3) نوع بوشینگی
4) نوع شمشی
5) نوع حلقوی
6 ) نوع قالبی یا رزینی (Castin Resine)
الف) ترانسهای جریان هسته پائین:
ترانسفورماتورهای جریان هسته پایین و یا "Tank Type": در این نوع، هادی اولیه در داخل یک بوشینگ به شکل "U" قرار دارد، بطوریکه قسمت پایین "U" در داخل یک تانک قرار دارد و در این حالت اطراف اولیه بوسیله کاغذ عایق شده و در روغن غوطهور میباشند در این حالت مخزن فلزی از نظر الکتریکی محافظت میشود . سیم پیچیهای ثانویه بصورت حلقه، هادی اولیه را در بر میگیرند. در این طرح طول اولیه نسبتا" زیاد بوده و عبور جریان باعث گرم شدن ترانس جریان میگردد . استفاده از این نوع ترانس های جریان بیشتر در مواقعی است که چندین هسته و نیز اتصالات متعدد در اولیه برای دسترسی به نسبتهای مختلف جریان لازم باشد. در این ترانسها ترکیب روغن به همراه دانه های ریز کوارتز خالص است که منجر به حد اقل شدن ابعاد ترانس میشود .
محفظه روغن کاملاً آب بندی است و نیاز به باز بینی و نگهداری ندارد.
ب ) ترانسهای جریان هسته بالا :
در این نوع ترانسها مسیر طی شده در اولیه بسیار کوتاه میشود . هادی اولیه از داخل یک حلقه عبور کرده و سیم پیچ ثانویه دور هسته حلقوی پیچیده شده است . که ثانویه آن در قسمت بالا بوده و به نام "Top Core " و یا "Inverted" مشهور میباشند. کلیه سیم پیچ ها در داخل عایقی از روغن قرار دارد و سرهای ثانویه بوسیله سیم های عایق شده از داخل یک لوله به جعبه ترمینال هدایت میشود. جهت ایجاد عایق کافی بین ثانویه و اولیه در اطراف سیم پیچ ثانویه تعداد زیادی دور کاغذ که با توجه به ولتاژ ترانسفورماتورها تعیین میگردد، پیچیده میشود و فضای خالی بین کاغذ و اولیه نیز توسط روغن احاطه میشود. در ولتاژهای بالا ممکن است که سیم پیچ ثانویه در یک قالب آلومینیومی جاسازی شود.
در هر دو حالت فوق بایستی سعی شود که به هیچ عنوان هوا و یا ذرات دیگر به داخل محفظه ترانسفورماتورهای جریان نفوذ ننموده و از طرف دیگر امکان انبساط و انقباض روغن در اثر تغییر درجه حرارت نیز وجود داشته باشد، لذا در بالای ترانسفورماتورها بایستی فضای خالی به وجود آورد که به منظور ایزوله نمودن از هوا، از فولاد یا تفلون و یا دیافراگمهای لاستیکی (ارتجاعی) استفاده میشود که در اثر انبساط و انقباض روغن بالا و پایین میروند. در بعضی از طرحها نیز محفظه بالای روغن را از گاز نیتروژن پر میکنند.
ج ) ترانس های جریان بوشینگی :
در بعضی از دستگاهها نظیر کلیدهایی از نوع "Dead Tank Type" و یا ترانسفورماتورهای قدرت و راکتورها جهت صرفهجویی میتوان ثانویه یک ترانس جریان را در داخل بوشینگ دستگاهها قرار داده، بطوریکه اولیه آن با اولیه دستگاه مشترک باشد. این نوع ترانس را ترانسفورماتورهای جریان از نوع بوشینگی مینامند. در ولتاژهای پایین نیز ممکن است از رزین به عنوان ماده جامد عایقی استفاده نمود که این نوع ترانسفورماتورهای جریان تا ولتاژ 63 کیلوولت کاربرد بیشتری دارند و در حال حاضر سازندگان مختلفی سعی مینمایند که این طرح را برای ولتاژهای بالاتر نیز مورد استفاده قرار دهند.
د ) ترانس جریان نوع قالبی یا رزینی:
از این نوعCT ها بیشتر در مناطق گرمسیری و به منظور جلو گیری از نفوذ رطوبت و گرد و خاک به داخل CT استفاده می شودو تا سطح ولتاژ 63 کیلو ولت و جریان 1200 آمپر بیشتر طراحی نشده اند.
این ترانسها بمنظور جداسازی مدارهای حفاظتی واندازه گیری از مدار فشار قوی و تبدیل مقادیر جریان یا ولتاژ به میزان مورد نظر بکار میروند . این نوع ترانسها قابل نصب در تابلوهای فشار متوسط است . عایق این نوع ترانسها از نوع اپوکسی رزین است که تحت خلا ریخته گری میشود و با خواص عایقی و مکانیکی مناسب ساخته میشود .
ترانس های جریان از نظر هسته به دو نوع تقسیم می شوند :
1) ترانس های جریان با هسته اندازه گیری
2) ترانس های جریان با هسته حفاظتی
1) ترانس های جریان با هسته اندازه گیری وظیفه دارند که در حدود جریان نامی و عادی شبکه از دقت لازم برخوردار باشند. و این نوع هسته ها باید در جریان های اتصالی کوتاه به اشباع رفته و مانع از ازدیاد جریان در ثانویه و در نتیجه مانع سوختن و صدمه دیدن دستگاه های اندازه گیری در طرف ثانویه شوند.
2) ترانس های جریان با هسته حفاظتی :
باید در جریانهای اتصال کوتاه هم بتوانند دقت لازم را داشته و دیرتر به اشباع رفته تا بتوانند متناسب با افزایش جریان در اولیه ، آن را در ثانویه ظاهر کرده و با تشخیص این اضافه جریان در ثانویه توسط رله های حفاظتی فرمان قطع یا تریپ به کلیدهای مربوطه داده تا قسمتهای اتصالی شده و معیوب از شبکه جدا شوند.
قدرت نامی ترانس جریان:
قدرت اسمی ترانس جریان مساوی حاصل ضرب جریان ثانویه اسمی و افت ولتاژ مدار خارجی ثانویه حاصل از این جریان می باشد. مقادیر استاندارد قدرت های اسمی عبارتند از :
2.5 – 5 – 10 – 15 – 30 VA
که البته مقادیر بالاتر در ترانسها قابل طراحی و استفاده نیز میباشد .
کلاس دقت ترانس های جریان:
میزان خطای CT ها با توجه کلاس دقت آنها مشخص می گردد. کلاس دقت CT برای هسته اندازه گیری و حفاظتی به دو صورت مختلف بیان می گردد. برای هسته اندازه گیری درصد خطای جریان را در جریان نامی ارائه می کنند.
مثلاً کلاس دقت CL=0.5 یعنی 5/0 % خطا در جریان نامی CT های اندازه گیری را معمولا در کلاس دقت های 1/0 – 2/0 – 5/0 – 1 -3 – 5 – مشخص می کنند و در کاتولوگ ها و نیم پلیت تجهیزات به صورت 2/0:cl 5/1200 c.t: مشخص می گردد . در ضمن باید توجه داشت اگر بر روی نیم پلیت ها 800 c نوشته شود یعنی ولتاژ اتصال کوتاه اگر از 800 ولت بالاتر رود ct به حالت اشباع خواهد رفت .
برای هسته های حفاظتی درصد خطای جریان را برای چند برابر جریان نامی بصورت XPY بیان می کنند . %X خطا در Y برابر جریان نامی مثلا 10 P 5 یعنی 5% خطا در 10 برابر جریان نا می که CT های حفاظتی بر اساس استاندارد IEC بصورت P 5 و P 10 می باشند) 30 P 5 و 20 P 5 و10 (P 5 و )20 P 10و 10 ( P 10
CT ها دارای چند نوع خطا می باشند:
1) خطای نسبت تبدیل RAT IO =KIS-IP/IP
2) خطای زاویه : PHASE DISPLUCEMENT: اختلاف زاویه و ثانویه CT با رعایت نسبت تبدیل خطای زاویه است.
3) ct های حفاظتی دارای خطای ترکیبی می باشند . مثلا خطای ترکیبی CT نوع 20P 5 برابر5% است.
4) ct های حفاظتی دارای خطای ALF می باشند
( ACURRACY LIMIT FUCTER) یعنی تاچند برابر جریان نامی CT نباید خطای CT از حد گارانتی تجاوز کند مثلا خطای ALF در CT 20 p 5 برابر 20 می باشند .
امروزه با توجه به پیشرفت تکنولوژی و نیز با به روی کار آمدن رله های ژکوندر استفاده از ترانسهای جریان وولتاژ جهت حفاظت و نیز جهت اندازه گیری کمیتهای جریان ، ولتاژ و توان و......امری است اجتناب ناپذیر و استفاده از آنها در تابلوهای برق و پستهای فشار متوسط و قوی جهت رسیدن به اهداف فوق رو به افزایش است در این مقاله سعی برآن شده که با توضیحاتی مختصرآشنایی هرچه بیشتر دوستان گرامی با تجهیزات فوق فراهم آورده شود.
چرا از ترانس های ولتاژ و جریان استفاده می کنیم؟
در صنعت برق برای دو منظور اندازه گیری و حفاظت نیاز به میزان پرامترهای ولتاژ و جریان هستیم ولی از آنجا که این مقادیر اعداد بزرگی می باشند لذا دسترسی به آنها نه عملی بوده و نه از لحاظ اقتصادی مقرون به صرفه است پس ناگزیر به استفاده داز ترانسهای جریان وولتاژ می باشیم تا این مقادیر را به مقادیر کوچکتری که کسری از مقادیر واقعی می باشند تبدیل نماییم. در واقع این تجهیزات نمونه کوچک شده ، با درصد خطایی بسیار کم از ولتاژ و جریان طرف اولیه هستند و چون تمامی دستگاه های اندازه گیری همچون آمپرمتر، ولتمتر، وارمتر و.......و نیز رله های حفاظتی بر اساس میزان جریان و ولتاژ ثانویه این تجهیزات ساخته می شوند لذا می توان به کمک این ترانسها به اهداف حفاظت و اندازه گیری دست یافت.
انواع ترانس های ولتاژ و جریان:
ترانسفورماتورهای جریان و ولتاژ در دو نوع حفاظتی و اندازه گیری طراحی و ساخته می شوند، بدیهی است که از نوع حفاظتی جهت تغذیه رله های حفاظتی و از نوع اندازه گیری و ثباتها استفاده می شود.ترانسفورماتورهای جریان با کلاس حفاظت : این نوع ترانسها معمولا" در چند تیپ 10P10، SP10،SP20 طراحی و ساخته می شوند که عدد قبا از حرف P میزان درصد خطا و عدد بعد از P صحبت عملکرد ترانس را در چند برابر جریان نامی نشان میدهد. ( مثلا" در ترانس SP20 در 20 برابر جریان نامی 5 درصد خطا وجود دارد).
ترانسفورماتورهای جریان با کلاس اندازه گیری : این ترانسها معمولا" در دو مبدل با کلاسهای یک و نیم ساخته میشوند. که این اعداد نشانگر میزان درصد خطا تا 102 برابر جریان نامی می باشند.
ترانسفورماتورهای ولتاژ با کلاس حفاظت: این نوع ترانسها معمولا" در دو مدل P3، P6 نیز میزان درصد خطا را نشان میدهند.
ترانسفورماتورهای ولتاژ با کلاس اندازه گیری : این نوع ترانسها نیز مشابه ترانسهای جریان با کلاس اندازه گیری میباشند.
ترانس های جریان از نظر ساختمان:
نکته حائز اهمیت در این نوع ترانسها این است که اگر ثانویه مدار باز باشد در اولیه جریان زیاد خواهد بود اما بدلیل مدار باز بودن تقریبا" هیچ جریانی از ثانویه نمیگذرد و در نتیجه فوران هسته سبب تلفات بسیار بالا در آن شده و موجب ذوب شدن سیم پیچهای سمت ثانویه ودرنهایت آسیب دیدن ترانس می شود.حال اگر نیاز به استفاده ازیک ترانس جریان یا یک کور ترانس جریان نباشد می توان آنرا با ترمینالهای جریانی ( لینک دار) اتصال کوتاه نمود.این موضوع در ترانسهای ولتاژ کاملا" برعکس می باشد.یعنی در ترانسهای ولتاژ هیچگاه ثانویه نباید اتصال کوتاه شود.
تاثیر انتخاب توان خروجی بر ضریب امنیت ترانس جریان:
انتخاب توان خروجی ترانسفورماتور اندازه گیری جریان بر اساس توان مصرفی ادوات اندازه گیری متصل به ترانسفورماتور و توان تلفاتی مربوط به سیمهای رابط انجام میگیرد.طراحی های جدید دستگاه های اندازه گیری به گونه ایست که توان تلفاتی آنها بسیار کاهش یافته و در صورتیکه فاصله ترانس از دستگاه اندازه گیری زیاد نباشد انتخاب توان 2.5 ولت آمپر برای ترانس جریان مناسب می باشد.شایان ذکر است که اگر توان خروجی نامی ترانس با توان واقعی ترانس متفاوت باشد ضریب امنیت (Security Factor = fs) مطابق رابطه ذیل تغییر خواهد نمود:
FS: ضریب امنیت واقعی
FS: ضریب امنیت نامی
SN: توان خروجی نامی
S : توان خروجی واقعی
SE: توان تلفاتی ترانسفورماتور که معمولا" بین 5 تا 20 درصد توان خروجی نامی است.بعنوان مثال اگر یک دستگاه ترانسفورماتور جریان مشخصات 10015 با کلاس دقت 5 FS5 .0 با توان خروجی 5 ولت آمپر انتخاب شود. ولی توان خروجی واقعی 5/2 ولت آمپر باشد ضریب امنیت جدید برابر خواهد بود با : (0.375+2.5) / ( FS= 5 x(5+0.3
این حالت در صورت بروز اتصال کوتاه و افزایش جریان در اولیه ترانسفورماتور هسته ترانس تا 35/9 برابر جریان اولیه به اشباع نخواهد رفت و جریان ثانویه ترانسفورماتور نیز به همین نسبت افزایش خواهد یافت.عبور این جریان افزایش یافته از ثانویه ترانسفورماتور موجب بروز ادوات اندازه گیری که حساس می باشند.خواهد شد.بنابراین توصیه میشود توان خروجی ترانسفورماتور جریان بر اساس توان واقعی مصرفی تعیین میگردد تا از بروز خسارت جلوگیری شود.
تاثیر انتخاب توان خروجیدر ترانس های جریان با کلاس حفاظت :
هر گاه در ترانسفورماتور های جریان میزان توان نامی زیاد انتخاب شود و ترانس از نوع کلاس حفاظت باشد و اگر میزان توان مصرفی کمتر از مقدار نامی باشد آنگاه کلاس دقت آن تغییر کرده و افزایش می یابد.بعنوان مثال اگر ترانس از نوع 10p 10 و نوان نامی آن VA10 باشد و فقط VA1 از ترانس کشیده شود qva توان باقیمانده باعث میشود که کلاس دقت آن تغییر کرده و مثلا" به 10 P 30 یا حتی 10 P 40 تبدیل شود پس نتیجه میگیریم که در ترانسهای جریان حفاظتی بیشتر انتخاب نمودن توان خروجی سبب افزایش کلاس دقت شده و از نظر فنی بهتر است.
تفاوت ترانس های جریان و ولتاژ:
با توجه به اینکه اصول ترانسهای ولتاژ و جریان مشابه اند اما تفاوتهایی نیز دارند.
1- در ترانسهای ولتاژ ، جریان عبور کننده از ثانویه توسط بار تعیین میشود ولی در ترانسهای جریان ، جریان طرف اولیه تعیین کننده بوده و میزان بار ثانویه تاثیری در مقدار جریان خروجی ندارد.( خروجی همیشه 1 یا 5 آمپری است)
2- ترانسهای ولتاژ در دو نوع کاهنده و افزاینده جریان بکار میروند ولی ترانسهای جریان معمولا" بعنوان کاهنده جریان مورد استفاده قرار می گیرند.
3- ترانسهای ولتاژ برای کار تحت فرکانس نامی بکار میروند ولی ترانسهای جریان باید بتواننددر شرایط اتصال کوتاه و هارمونیکهای ناشی از آن، مشخصات خود را از قبیل جریان خروجی و کلاس دقت حفظ کنند.
4- ترانسهای ولتاژ معمولا" سه فاز هستند.( مخصوصا" در فشار ضعیف) ولی ترانسهای جریان بصورت تک فاز طراحی و ساخته و حفظ می شوند.
5- ترانسهای جریان از نظر ولتاژی، ایزولاسیون مشکل دارند.دلیل اینکار وجود ولتاژ بالا در اولیه و ولتاژ تقریبا" صفر در ثانویه است.
معیارهای انتخاب ترانس جریان:
برای انتخاب ترانس های جریان در صنعت معیارها ی مختلفی وجود دارد که توضیح آن در این مقاله نمیگنجد و فقط سعی شده به اهم آن اشاره شود.
1-ولتاژ عایقی
2- جریان نامی اولیه
3- جریان نامی ثانویه
4- جریان قابل تحمل کوتاه و مدت و زمان آن
5- جریان دینامیکی اتصال کوتاه در اولیه
6-فرکانس سیستم
7- تعداد هسته ها
8- ابعاد ترانس
9- کلاس دقت
10- ابعاد خروجی
معیار انتخاب ترانس ولتاژ:
همچون ترانسهای جریان در ترانسهای ولتاژ نیز جهت سفارش و مصرف به موارد مهمی باید دقت نمود که اهم آنها بشرح ذیل میباشد.
1- ولتاژ نامی اولیه
8- ولتاژ نامی ثانویه
3-توان نامی خروجی
4- توان خروجی ماکزیمم
5- خطای نسبت تبدیل
6- فرکانس نامی
7- حفاظت اولیه و ثانویه
8- انواع عایق
معمولا" جریان ثانویه ترانسهای جریان 1 یا 5 آمپر می باشند.که امروزه مصرف ترانسهای A1 بدلیل افت کمتر توان و نیز مسئله اتصال بیشتر شده است. همانطور که مستحضر هستید ترانسهای جریان فشار ضعیف همگی تک کور هستند حال اینکه ترانسهای جریان فشار متوسط تا 4 کور قابل تعمیم می باشند که هر کدام از کورها می توانند بسته به توان نامی و جریان نشان A1 یا A5 و یا کلاسهای دقت مجزای از هم ( حفاظت و اندازه گیری) باشند.در خصوص جریان حرارتی در ترانسفورماتور های جریان شایان ذکر اینکه این جریان بر اساس 100x in = ITN محاسبه میشود که معمولا" حداکثر آن بنا به درخواست در ترانسهای تیپ اولیه ka30 ورود ترانسهای با یک جریان اولیه ka60 می باشد.
بررسی زمان اتصال کوتاه در ترانس های جریان:
مبحثی که این روزها معمولا" در نقشه های مدارهای قدرت به چشم میخورند زمان اتصال کوتاه میباشد که معمولا" در نقشه ها و در تمام مدارک فنی و کاتالوگها 1 ثانیه قید شده ولیکن در صورت تبدیل آن به زمانهای دیگر میتوان از روابط ذیل که فقط از نظر حرارتی به این قضیه مدارهای قدرت به چشم میخورد.زمان اتصال کوتاه میباشدکه معمولا" 1 یا 3 ثانیه میباشد.